Trigonometric Ratios

Trigonometric RatioAbbreviationDefinitionReciprocal RatioReciprocal Abbreviation
Sinesin(θ)Opposite/HypotenuseCosecantcsc(θ) = 1/sin(θ)
Cosinecos(θ)Adjacent/HypotenuseSecantsec(θ) = 1/cos(θ)
Tangenttan(θ)Opposite/AdjacentCotangentcot(θ) = 1/tan(θ)
Cosecantcsc(θ)1/sin(θ)Sinesin(θ) = 1/csc(θ)
Secantsec(θ)1/cos(θ)Cosinecos(θ) = 1/sec(θ)
Cotangentcot(θ)1/tan(θ)Tangenttan(θ) = 1/cot(θ)
Additional Properties
  • Pythagorean Identity:
    • sin²(θ) + cos²(θ) = 1
    • sec²(θ) - tan²(θ) = 1
    • csc²(θ) - cot²(θ) = 1
  • Reciprocal Identities:
    • sin(θ) = 1/csc(θ)
    • cos(θ) = 1/sec(θ)
    • tan(θ) = 1/cot(θ)
  • Quotient Identities:
    • tan(θ) = sin(θ) / cos(θ)
    • cot(θ) = cos(θ) / sin(θ)
  • Even-Odd Identities:
    • sin(-θ) = -sin(θ)
    • cos(-θ) = cos(θ)
    • tan(-θ) = -tan(θ)
  • Cofunction Identities:
    • sin(90° - θ) = cos(θ)
    • cos(90° - θ) = sin(θ)
    • tan(90° - θ) = 1/tan(θ)

Last Updated : 03 October, 2025

dot 1
One request?

I’ve put so much effort writing this blog post to provide value to you. It’ll be very helpful for me, if you consider sharing it on social media or with your friends/family. SHARING IS ♥️

2 thoughts on “Trigonometric Ratios”

  1. The arguments presented are compelling and thought-provoking. I can see the validity of the points made.

  2. This article provides a comprehensive analysis of the topic. I appreciate the depth of research and the clear presentation of the information.

Comments are closed.